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Summary of Progress

1) Construction of Robustly Good Trellis Codes for Use With Sequential
Decoding

Sequential decoding has been shown to be the best alternative for achieving large coding
gains with trellis coded 8-PSK and 16-QAM modulation [1]. Preliminary results reported
earlier on code performance were based either on codes designed to maximize asymptotic
coding gain, i.e., optimum free distance (OFD) codes, or on codes designed to maximize
the computational speed of sequential decoding, i.e., optimum distance profile (ODP) codes.
More detailed studies have since shown that the best overall performance is not achieved
with either OFD codes or with ODP codes.

Rather, a new approach has been developed for constructing trellis codes which are
neither OFD nor ODP. We call the new codes robustly good trellis codes. Given that a
robustly good trellis code of constraint length v has been found, the approach used to find
a constraint length v + 1 robustly good trellis code is to find the code that improves the
free distance or the distance profile of the constraint length v code, with priority given to
improving the free distance. In other words, we try to find a longer code which has a free
distance or a distance profile superior to or identical to the shorter one. Systematic feedback
8-PSK and 16-QAM robustly good trellis codes with v up to 15 and asymptotic coding gains
up to 6.66 dB are obtained using this approach. Compared to ODP and OFD trellis codes,
the robustly good trellis codes provide a much better trade-off between free distance and
distance profile. Indeed, the new codes achieve nearly the same free distances as the OFD
codes and nearly the same distance profiles as the ODP codes.

A paper based on these new results is being prepared for submission to the IEEE Trans-
actions on Information Theory. A summary of this paper, which will be presented at the
1993 IEEE International Symposium on Information Theory, is included as Appendix A of
this report [2].

2) Unequal Error Protection Capabilities of Convolutional Codes

An important practical problem in many coding applications is unequal error protection
(UEP). Although this problem receives little attention in the literature, it can be of great
importance in applications such as image transmission from deep space, where different parts
of the data stream, representing, say, important feature information rather than background
scenes, must be protected with higher reliability than the rest of the data. Algebraic block
codes which have UEP capabilities have been studied by some researchers. But little work
has been done on the UEP properties of the convolutional codes most often found in space
and satellite applications.

We have recently begun a study of the UEP capabilities of (n, k£, m) convolutional codes
with £ > 1. The usual transfer function analysis technique is modified to calculate an upper
bound on the bit error rate (BER) Pb(')(E) for each input bit position ¢,1 <z < k. We also



define a distance vector d for convolutional codes as follows:
d=( }1),d(2),---,d§,k)), (1)

where d(f') is the effective minimum free distance seen by input bit position z,1 < < k.

d is then a measure of the UEP properties of a given code, Le., if d is a constant vector, then
all input bit positions have equal error protection, but if d(f‘) > d}’) for some ¢ and j, then
input bit position z has greater error protection than input bit position j. Most optimum
free distance (OFD) convolutional codes are found to have constant distance vectors, i.e.,
they provide no UEP capability. One of the goals of our research is to construct convolu-
tional codes with UEP properties, i.e., for a given desired distance vector, find the encoder
realization with the minimum overall memory.

A paper based on the modified transfer function analysis technique of UEP capabilities
will be presented at the 1993 IEEE International Symposium on Information Theory. A
summary of this paper is included as Appendix B of this report {3]. Additional progress on
this problem will be presented in our next report.

3) New Results on Rate 1/n Convolutional Codes

The problem of finding good large constraint length, low rate convolutional codes for deep
space applications is again being investigated. An intriguing new formula for computing the
free distance of rate 1/n convolutional codes has been discovered. This formula is based
on correlation coefficients of both the information sequence and the generator sequence. It
allows us to show that for the class of randomly constructed (n,1,m) convolutional codes
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with probability 1, i.e., in the limit of large constraint length, the free distance of almost
all codes approaches one-half the constraint length. This result is consistent with what is
known for short OFD codes, but suggests the existence of much better long codes than was
previously thought possible.

The new formula for computing free distance has been used to construct some large
constraint length codes with excellent distance properties. These codes are close to optimal
for small constraint lengths and their distances continue to grow as suggested by (2) for larger
constraint lengths. The new codes are extremely powerful and would make good candidates
for use with sequential decoding in deep space applications.

A paper based on this new formula will be presented at the 1993 IEEE International
Symposium on Information Theory. A summary of this paper is included as Appendix C of
this report [4]. Further progress on this problem will be presented in our next report.



4) New Results on Double Memory Convolutional Codes

Unit Memory (UM) convolutional codes, i.e., (n,k,1) codes with one memory unit per
input bit position, were introduced by Lee [5]. UM codes were found to have good distance
properties and their byte orientation (k bits per byte) made them desirable as inner codes
in concatenated systems with symbol based (Reed Solomon) outer codes. We have begun to
study Double Memory (DM) codes, i.e., (n, k,2) codes with two memory units per input bit
position. We feel that DM codes may have even better distance properties than UM codes,
while maintaining their byte orientation (2k bits per byte). This belief is based on a new
upper bound which indicates that the free distance of DM codes can be larger than the free
distance attained by other codes with the same rate and encoder memory. We are currently
conducting a search for optimal DM codes. These codes will be good candidates for use in
concatenation systems.

A paper based on these results was presented at the 1992 Allerton Conference on Com-
munications, Control, and Computing. A copy of this paper is included as Appendix D of
this report [6]. The results of our search for optimum DM codes will be presented in our
next report.

5) Constructing Convolutional Codes from Quasi-Cyclic Codes

The lack of a suitable algebraic structure has long proved a hindrance to researchers try-
ing to construct good long convolutional codes. Although some connections between cyclic
codes and convolutional codes have been found, few good new convolutional codes have
been constructed using these connections. Recently, Tanner 7] suggested an interesting link
between quasi-cyclic codes and convolutional codes. We have extended Tanner’s work and
developed an algorithm for constructing a convolutional code from a given quasi-cyclic code.
The free distance of the constructed convolutional code is lower bounded by the minimum
distance of the quasi-cyclic code. Some long convolutional codes with large (but subopti-
mal) free distances have been found using this construction. Our hope is that additional
development of this theory will yield large classes of good long convolutional codes.

A paper based on these results was presented at the 1992 DIMACS Conference on Coding
and Quantization. A copy of this paper is included as Appendix E of this report [8]. Further
results will be presented in our next report.
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Abstract

In this paper. the design criteria for trellis codes with sequential decoding are exam-
ined. A comparision of trellis codes with Optimum Distance Profile (ODP) and Optimum
Free Distance (OFD) reveals that hoth ODP and OFD trellis codes for some constraint
lengths may not result in the best trade-off between error performance and computational
performance when sequential decoding is used. A new approach is proposed to construct
robustly good trellis codes for use with sequential decoding. The new codes obtained using
this approach achieve nearly the same free distances as the OFD codes and nearly the same
distance profiles as the ODP codes.
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SUMMARY

Most of the trellis codes constructed thus far have been for use with the Viterbi
algorithm(l. 2]. The asvmptotic error performance of the Viterbi algorithm[3] is deter-
mined by the minimum free Euclidean distance of the code. Thus. the free distance
has been used as the main criterion in code construction for use with the Viterbi
algorithm([l. 2]. However. the computational effort of the Viterbi algorithm grows
exponentially with the code constraint length v. This limits its application to codes
with small values of v and relatively modest coding gains. To achieve larger coding
gains with tolerable computational complexity. alternative decoding algorithms must
be used.

It is well known that sequential decoding [1]-[6] can perform almost as well as
the Viterbi algorithm and its computational complexity is essentially independent of
v. Thus. larger coding gains are possible when larger constraint length codes are
used with sequential decoding. In [7. 38, 9], sequential decoding has been used to
decode trellis codes and these papers demonstrate that sequential decoding is a good
alternative to the Viterbi algorithm. Iowever. very few papers have addressed the
problem of constructing trellis codes for use with sequential decoding. In this paper,
trellis codes with Optimum Distance Profile (ODP) and Optimum Free Distance
(OFD) are examined and design criteria for trellis codes with sequential decoding
are discussed. We show that neither the ODP nor the OFD trellis codes provide the
best trade-off hetween distance profile and free distance. Thus, a new algorithm is
proposed to constrict robustly good trellis codes.

First, we show that the computational distribution of sequential decoding for
trellis codes is a function of the code’s column distance function. Consider a rate
k/k +1 trellis codes. For a partial path associated with a message m of length [

branches (A x I information bits), the cumulative Fano metric is given by

i
L(l) = —Z{O(lz[:,’,(l:n]+‘;}(.‘:,‘)}, (1)
=0
where d*[z;. aT"] = ||z, — a™||%. z; is the received signal. ™ is the hypothetical trans-

mitted signal. « is a positive constant, and /J(z;) is a constant independent of the
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transmitted signal. It can further be shown that L([) is upper bounded by

i
L) < —ad} + 3~ 3(=), (2)

i=0

where d} is the column distance function of the code[10]. A sequential decoder aban-
dons a path whenever the FFano metric falls below the metric of a temporarily more
likely path. From ( 1) it follows that a partial path has a small path metric and
is rejected by the decoder if its distance from the revceived sequence is sufficiently
large. But it is the speed of this rejection that deterimines the computational effort.
Without loss of generality. we assume that the decoder follows a wrong path from
the original node. Then. we have the upper bound of the path metric given by ( 2).
This bound shows that the metric function along any path different from the correct
path decreases at least as fast as the column distance function grows. Thus. fast
rejection of an incorrect path requires a rapidly decreasing metric along incorrect
paths. Consequently, a rapidly increasing column distance function guarantees fast
decoding. This observation has long been recognized for convolutional codes [10].
From the above analysis, we see that a similar conclusion can be drawn for trellis
codes. We give an example to verify this. The column distance functions (CDF’s)
of two v = 9 8&PSK trellis codes are shown in Figure 1. Code 1 has parity-check
coefficients /1% = 1761. I1' = 0106. and /I? = 0100 in octal form. The paritv-check
coefficients for code 2 are I1° = 1001. [{' = 0036. and [7* = 0546. Both codes have
the same free distance df,.. = 6.343. [owever, note that the CDF of code 1 grows
much faster than code 2. Figure 2 shows the computational distributions of the two
codes at an SNR = 7.7 dB. It is seen that the computational hehavior of code 1 is
superior to code 2. This example shows that a rapidly increasing column function
results in good computational performance. This is consistant with the results for
convolutional codes[10]. Tt can also be shown that the initial part of the CDF (called
the distance profile) plays a more important role than the latter part. Thus. the
distance profile should be optimized to achieve good computational performance.

A trellis code is said to have a distance profile (dZ,d?,---.d?%) superior to the

distance profile (dif. d?.--- . d?) of another code of the same constraint length v if for



some p, 0 < p<w,

? 2
LT @
We say a code is an optimum distance profile code if its distance profile is equal
to or superior to that of any other code with the same constraint length. Trellis
codes with optimum distance profiles can be constructed by computer search. In the
construction algorithm. the free distance should be used as a secondary criterion. i.e.,
the code having the larger free distance is retained whenever two codes have the same
distance profile. Compared with the Ungerboeck codes. we found that the ODP trellis
codes have much smaller free distances for some constraint lengths. For example. the
free distance of ODP trellis coded 8-PSK with v = 7 is only 1.0 compared with
6.59 for the Ungerboeck code. This results in a reduction of more than 2.0 dB in
asymptotic coding gain. Thus. it appears that ODP codes do not provide a good
trade-off between free distance and distance profile.

We have also conducted exhaustive searches for OFD trellis codes in which the
distance profile was used as a secondary criterion. Our results indicate that the
OFD trellis codes do not provide the best trade-off between distance profile and free
distance. either. Figure 3 shows the distance profiles of ODP. OFD. and Ungerboeck
(UG) trellis coded 8-PSK with » = 7. Note that the OFD code has a much inferior
distance profile than the ODP code. (Ungerboeck did not use the distance profile as a
secondary criterion in his code construction 1, 2]. Thus. the UG code has an inferior
distance profile compared to the OFD code. although both codes have the same free
distance.)

Thus. we have constructed trellis codes which are neither optimum free distance
nor optimum distance profile. \We call the new codes Robustly Good C'odes (RGC).
Given that a robustly good trellis code of constraint length v has been found. the
approach used to find a constraint length v+ 1 robustly good trellis code is to find the
code that improves the [ree distance or the distance profile of the constraint length
v code, with priority given to improving the free distance. In other words. we try

to find a longer code which has a free distance or a distance profile superior to or



identical to the shorter one.
Suppose that the [ree distance and distance profile of a robustly good trellis code
v) and d*(v) = {d2(v).d}(v), - .d%(v)}. respec-

with constraint length v are &2, (

tively. Then a robustly good trellis code with constraint length v + 1 can be found
using the following algorithm:

0)Set d¥ . =d2  (v)and d¥ = {d¥ d¥,--- d¥,d¥ |} = {d3(v).di(v). - . di(v).d2(v)}.

free ree( v+1

1) Select a new code (' by systematically changing the paritv-check coefficients.
Set 1 = 0.

2) Compute the column distance d? of code C.

3

1

) If d% < d¥. go to 8). Otherwise 1 — i + 1, go to 4).
) If 7 < v+ 1.go to 2). Otherwise. go to 3).

21

3) Compute the free distance d2 .. of code C. If &3.., > d¥..., print the parity-
p free free p P

Tee

check coefficients of code . 2., d* = {d*, &3, . d* . and *a better {ree distance
free 01 v+1

code is found”. Otherwise. go to 6).
6) If d?

T) If d* > d¥ for some i, print the parity-check coeflicients of code C. d%,.., d?,

ree < (F.cer g0 t0 8). Otherwise. go to 7).
and “a better distance profile code is found”.

8) If the set of codes is exhausted, stop. Otherwise, go to 1).

The above algorithm guarantees finding a trellis code that is no worse than the
previous constraint length code in terms of free distance and distance profile. The
tnitial code can be chosen such that it results in a good trade-off between distance
profile and free distance. We began our construction of robustly good trellis codes at
a constraint length of 3. Trellis codes for 8-PSK modulation constructed using this
approach are shown in Table I where @2 is the minimum distance and d%,,, is the free
distance. (d% is a good indicator of the distance profile of a code.) The minimum
distances and free distances of Ungerboeck (UG) and Porath and Aulin (P& A)[11]
codes were also included for comparision. Compared to ODP and OFD trellis codes,
the robustly good trellis codes provide a much better trade-off between free distance
and distance profile. Indeed. the new codes achieve nearly the same free distances as
the OFD codes and nearly the same distance profiles as the ODP codes. Trellis codes

for 16-QAM modulation have also been constructed using this approach.
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Table 1. Robustly good trellis codes for 8-PSK modulation

2
\Y 1o Hi 22 d% dfree

RGC UG P&A RGC UG P&A
3 15 06 04 2.59 2.59 - 4.59 4.59 -
4 35 12 10 317 2.59 2.59 5.17 5.17 5.17
5 67 26 20 3.17 3.17 3.17 5.17 5.76 5.76
6 121 066 060 3.76 2.59 2.59 6.00 6.34 6.34
7 337 026 100 3.76 2.59 2.59 6.34 6.59 6.59
8 701 166 300 4.34 2.59 2.59 6.93 7.52 7.52
9 1175 0142 0400 4.34 3.76 3.17 6.93 7.52 7.52
10 | 2015 0402 0400 4.34 3.17 3.17 7.76 7.52 8.10
11 | 4047 2302 0400 493 - 3.17 8.10 - 8.34
12 | 10517 | 06462 | 04400 4.93 - 3.76 8.34 - 8.69
13 33001 16266 01400 4.93 - 3.76 8.69 - 8.69
14 | 57001 | 22266 | 35400 5.52 - - 8.69 - -
15 | 104001 | 045666 | 035400 | 5.52 - 4.34 9.27 - 9.51




7.0 —— T T T T T T T T

6.0 - code 1 T

50 + |
code 2 ]

2 ]
d| —
1

1.0 >;L PUREPUT I S HS VS G ST R S G S Gy S b [ T S T Ny JREE | i
0 7 14 21 28 35 42 49

i

Figure 1. CDF’s of two v=9 trellis codes
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Abstract

This paper proposes a modified transfer function analysis that yields
the individual bit error probability for any specified input bit position. This
analysis proves useful in determining the unequal error protection (UEP)
capabilities of convolutional codes. The UEP transfer function is used to
determine an upper bound on the bit error probabilities for individual input
bit positions in convolutional codes. The form of the individual bit error
probability bound reveals three factors that affect the UEP capabilities of a
convolutional encoder: the effective free distance of each bit position, the
number of low weight code vectors, and the distribution of 1's in the input

sequences that generate low-weight code vectors.
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Summary

State diagram analysis has long been used to determine the
transfer functions of low complexity (n,k,m) convolutional encoders.
The transfer function, in turn, is then manipulated to determine the
free distance, event error probability, and bit error probability of the
encoder. The bit error probability derived from the standard
transfer function is the probability that an input bit is decoded
incorrectly. However, the error probability which is relevant for
unequal error protection (UEP) codes is the probability of bit error at
each specific input position. UEP codes are of interest in several
environments. For instance, in packet switched networks, the header
information requires more error protection than the data. UEP codes
could provide the additional header protection. In a multi-user
environment, different users may require more or less error

protection than others. UEP codes may again be appropriate.

This paper proposes a modified transfer function analysis that
yields the individual bit error probability for any specified input bit
position. The method is described for codes with k >1, but can easily
be applied to codes with k =1 by first transforming the code to a unit
memory coder or double memory code [1,2]. First, standard transfer
function analysis will be reviewed. Next, the modified transfer
function will be described and illustrated with an example. An
algorithm that calculates the modified transfer function is briefly

described. A discussion of results then follows.



An (n,k,m) convolutional encoder accepts k -dimensional input
vectors, adds redundancy according to the encoding rule, and then
outputs n-dimensional code vectors. The parameter m is the
maximum number of memory registers needed to store any element
of the input vector. The total encoder memory, K, is defined as the

total number of memory registers in the encoder.

It is assumed that the reader is familiar with the method of
determining a transfer function from an augmented state diagram

[3]. The two-variable transfer function is of the form
T(X,Y)= ) A,,X°Y’. The average bit error probability for a specific
b=1

d=dfree

transfer function is bounded by P,(E)< %ZBde , where B, =) bA,,
d b

is the total number of nonzero information bits associated with all
codewords of weight d, and P, =2%[p(1- p)]g . (For simplicity, we
assume a binary symmetric channel with crossover probability p. )
When the individual bit error probability is desired for each of
the k input positions, then the state diagram must be modified
before Mason's gain formula is applied. Each branch label becomes
X'Y}Y}---Y]r, where j, is equal to the input bit in the k* position,
and i is the Hamming weight of the branch output. Obviously, the
sum of the j, 's is the Hamming weight of the input vector. Mason's

gain formula is then applied. The resulting UEP transfer function has

Ja
the form T(X.Y,,-.Y,)= ¥ Y C, XYY, where C,, is the

d=dfree j=0
number of paths associated with the j* input sequence distribution

of 1's that generates code vectors of weight d., j, is the number of



distinct input sequence distributions that generate code vectors of
weight d., and b,;,---,b,; represents a particular input sequence

distribution of 1's. The bound for the individual bit error probability

is then PP’(E)<Y BYP,, 1<i<k, where P{’(E) is the probability
d

that a bit located in the i" position of the input vector is decoded

. Ja
incorrectly and BY =3 b,,C,; is the total number of 1's in bit
j=0

position i of all input vectors that generate code vectors of weight d.

Note that the new parameters are related to the original parameters
. 1 .

by the equations B, =Y BY and P,(E)= ZE P,

The modified state diagram for a particular (3,2,1) code is
shown in Figure 1. The generator vectors for the code are listed in

Table 1. The UEP transfer function is

T(X,Y,,Y,) =X (Y, +Y,Y])+ X*(2V\Y, +Y\Y; + Y]V} +YIY])
X (Y, 210, +4YIY VYT +4YY S + VIV + YY)+

The bound for the probability of a bit error in the first input position
is then P’(E)<P,+7P,+33P,+--. Similarly, the bound for the

probability of a bit error in the second input position is given by
PP (E)<3P, +10P, +43P,+---.

An obvious drawback of state diagram analysis is the high
level of complexity when the memory order and input vector
dimension are not severely restricted. As the total memory K

increases, the number of states increases exponentially. In addition,



as k, the dimension of the input vector increases, the number of
branches leaving each state increases exponentially. The number of
forward paths, loops, and sets of nontouching loops quickly becomes
too unwieldy for analysis. Because of this complexity, an algorithm
was developed to calculate the modified transfer function and
individual bit error bounds. The algorithm is based on the work in

[4], which originally computed the column distance function and
transfer function of (n,1,m) convolutional codes. The algorithm was

generalized to accept (n,k,m) codes , and modified to compute the
newly introduced parameters B}’ and P{’(E). The algorithm uses
the distance profile of a code to eliminate unproductive paths in the
search for the column distance function. It will be a useful tool in

developing unequal error protection codes.

Results for a number of existing codes are presented in Table 1.
The UEP transfer function verified the expectation that the bit
positions with lower memory order generally have a greater bit
error probability. However, uneven memory distribution is not
required for unequal error protection, which is demonstrated by the
individual bit error probabilities of the first and third codes listed in
Table 1. While uneven memory distribution is not required, it is
expected that as the distribution becomes more uneven, the unequal

error protection becomes more pronounced.

Examining the form of P{’(E) and the UEP transfer functions in

Table 1, it can be seen that several factors affect the bit error

probability for a specific input position. For all of the codes studied



so far, the first term of each P{’(E) has the form B, P,,.. Note that
P .. is the dominant term of the product. A code for which the first

term of each P¥(E) has the form BY. P

e () will have significantly

deff (i)
more pronounced unequal error protection. The effective free
distance for input bit position i , deff(i), is the lowest Hamming
weight among all code vectors that are generated by input sequences
with at least one 1 in the i” position. The effective free distances are
lower bounded by the overall free distance, dfree. In addition to the
individual effective free distances, two other important factors
affecting P{”(E) are the number of low weight code vectors, and the
number of 1l's in position i that belong to input vectors
corresponding to the low weight code vectors. That is, in addition to
the traditionally important codeword Hamming weight and
multiplicity, the distribution of 1's in the input vector is important.
The number of ones in a particular position is related to the length of
the input sequence and to the entire Hamming weight of that
sequence, although the exact relationship has not been completely

determined.

The individual bit error probability bound in this paper has
three major features. First, it allows existing codes to be evaluated
for unequal error protection. Second, it has revealed a new criterion
that must be considered when designing unequal error protection
codes, i.e., the distribution of 1's in the input vectors. Last, it should
again be noted that the input bit positions of the analyzed existing
codes all have an effective free distance equal to the overall free

distance. That is, differences in individual bit error protection have



been due only to differences in the multiplicities and input
distributions. Using the insights gained from the new UEP analysis
technique, we expect to design new codes with different individual

effective free distances.
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Abstract — A new formula is derived to compute the free distance of rate 1/n
convolutional codes. This formula allows us to derive a new asymptotic lower bound
on the free distance that surprisingly reaches the upper bound in the limit of large
memory m. First, we derive a formula for the weight of the product of two binary
polynomials. Then, by considering the free distance as the minimum weight codeword
in a convolutional code, we prove that, in the limit of large m, the free distance of
rate 1/n convolutional codes is lower bounded by n(m + 1)/2, i.e., the asymptotic
lower bound equals the asymptotic upper-bound. This formula also leads to a new
approach for constructing finite constraint length convolutional codes.
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1. Introduction

The free distance, dgrc, 1s an important parameter in evaluating the performance of
convolutional codes. Although it is possible to find optimal convolutional codes with
small constraint length by exhaustive search, the free distances of these codes do not
indicate what we might expect of codes with larger constraint lengths. Therefore.
many researchers have tried to derive lower and upper bounds on the free distance of
convolutional codes. Costello [1], Zigangirov and Massey [2] have derived lower and
upper bounds on the free distance of fixed and time-varying convolutional codes using
a Gilbert-type [3] argument, that is, by deriving bounds on ensemble averages. In this
paper, we investigate a new approach to deriving a lower bound on the free distance
of rate 1/n convolutional codes. The free distance can be defined as the lowest weight
codeword in a linear convolutional code. It is shown that an expression for the weight
of the codewords of rate 1/n convolutional codes can be simplified as the constraint
length goes to infinity and that the free distance of randomly constructed codes can
be computed. Their free distance thus represents a lower bound on the free distance
that convolutional codes of these rates can achieve. It is noted that this lower bound
meets the asymptotic upper bound on free distance for rate 1/n convolutional codes.
Although this bound is valid only asymptotically, it suggests that a similar bound
might also be found for finite constraint lengths, and it leads to a new approach for
constructing finite constraint length convolutional codes.

2. Preliminaries

One of the main problems in deriving bounds on the free distance of binary convo-
lutional codes is the difficulty of computing the weight of the product of two binary
polynomials. The goal of this section is to introduce a new way of computing the
weight of codewords. The main idea is to convert modulo-2 addition in the binary
field into real addition in the integer field. That is, suppose (r.y) are two elements
from the binary field F = {0, 1}, & denotes addition in the binary field. and + denotes
addition in the integer field 7, then

rHy=z+y—2zy. (1)

In order to derive our new formula on the free distance of rate 1/n convolutional
codes, we need the following definitions:

Definition 1. Let a(X) be a polynomial with coefficients a;. Then. we define the
0t correlation coefficient of a(.X') as

1=00
Roa = Y ai,
1=0

—_
o
—



and more generally the kth correlation coefficients as

1=

Ria(J1, g2, -2 0k) = Qibityy - Cigjyto 4k (4)
=0

]

where ji, j2,....jk are k integers strictly greater than 0.

Definition 2. Let ¢V (X),¢®(X),...,¢""(X) be the n generator polvnomials of a
rate 1/n convolutional code C. Then, let G(X) be the composite generator

G(X) = gM(X™) + XgP(X™) 4 .+ XXM, (5)

as defined in [4]. Then. for any information sequence u(X), the code sequence v(X)
is generated by

v(X) = u(X™)G(X). (6)

3. Lower bound on the free distance of rate 1/n
convolutional codes

Using the previous definitions, we can obtain the following theorem on computing the
free distance of rate 1/n convolutional codes.

Theorem 1. Let C be a rate 1/n convolutional code with composite generator G(X).
Then the free distance of C' can be computed as:

u(X)#0 =0 7,k=0

dfree = min (ROUROG -2 Z Riw(j)Rig(ny) +4 Z Ron(j. k) Rag(nk.ny) )
(7)

(7) gives a general formula for computing the free distance of a rate 1/n convo-
lutional code. However, this formula can be simplified when the constraint length
(memory order) goes to infinity. Specifically, let us construct our generator polvno-
mial by randomly selecting its coefficients from F', that is:

t=n(m+1)-1

GX)= Y X\ (3)

1=0

where ¢; € F = {0,1} and Pr(g; = 0) = Pr(g; = 1) = ; for any integer > 0. For
these randomly constructed codes, the following theorem can be derived:



Theorem 2. Let G(X) of degree n(m + 1) — 1 be the composite generator of a
randomly constructed rate 1/n convolutional code with memory order m. Then. with
probability 1.

dfrerz

lim —free  —
5o n(m + 1)

(9)

o | —

Thus, by taking a random generator G(X), with probability 1 the free distance
is on the order of n(m +1)/2 as m goes to infinity. Since there exists a large number
of randomly generated codes, and with probability one these codes achieve the free
distance of (9), this gives a lower bound on the free distance of rate 1/n convolutional
codes, i.e., almost all codes reach this bound. This bound represents a significant im-
provement on the previous lower bounds derived on the free distance of convolutional
codes, since it implies that there exists codes for which the free distance reaches the
asymptotic upper-bound derived by Costello [1] and that the number of these codes
1s very large.

4. Construction of finite constraint length rate
1/n Convolutional Codes.

Although the bound derived in Theorem 2 is only valid as m goes to infinity, Theorem
1 can be used to obtain a lower bound on the free distance of finite constraint length
codes, but the bound becomes simple to compute only when m goes to infinity. It
is possible, however, that the asymptotic bound is also true for finite m since codes
found by exhaustive search for relatively short constraint lengths satisfy this bound.
In order to give a better idea of the potential of (7) in computing free distance for
finite constraint lengths, we now show that Theorem 1 can lead to a deterministic
construction of rate 1/n convolutional codes.

By looking at (7), we note that a code with large free distance requires a large
weight generator (large Rog), small first correlation coefficients Rig(nj). large sec-
ond correlation coefficients R,g(nk,nj), etc. Thus, an algorithm can be derived to
construct generators of rate 1/n convolutional codes. starting from the all ones gen-
erator and replacing ones by zeros as needed to improve the correlation coefficients.
A large number of convolutional codes constructed this way have free distances close
to optimal codes. and the algorithm allows us to construct codes with much higher
constraint lengths than previously constructed codes.



5. Conclusion

A new formula for computing the free distance of rate 1/n convolutional codes is de-
rived. The formula leads to a new asymptotic lower bound on the free distance and to
the construction of finite constraint length convolutional codes in a deterministic way.
It may also be possible that this formula can be generalized to rate k/n convolutional
codes, although the concept of a composite generator does not exist for rates other
than 1/n.
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1. Introduction

This paper describes double memory convolutinal codes. which are an extension of
the unit memory codes developed by Lee {1]. First. unit memory codes are reviewed,
and then double memory codes are presented. Finallv. an upper bound on the free
distance of double memory codes is developed and examined. Double memory codes
are under study as a method of providing unequal error protection [2].

2. Unit Memory Codes

Let u; and v, denote the information and code vectors. respectively, at sublock ¢ of a
general convolutional code. An (n. k. M) binary convolutional code can be represented
by the encoding equation

ve= Gl 4+ o G+ o+ ua Gy

The information vector for the (n. ..M ) code is a k-bit vector. the code vector v, is an
n-bit vector, and the encoding matrices. (;.¢ = 0.1....\/, are kzn binary matrices.
The state complexity of a convolutional code is defined to be the number of state
variables, A = Mk. (For simplicity. it is assumed that the memory is equally allotted
to the input bits, i.e., each encoder input is delayved by M memory units.)

A unit memory code (M) is a binary convolutional code with memory M = 1.
The encoding equation of a UMC is v, = (o + w,—1(7y. It can be shown that an
(n,. ko, m) convolutional code with encoding matrices go.¢1,...,gm, is equivalent to
the (n = mn,, k = mk,. |} UNIC" which has the encoding matrices

Jo g1 o Um—1 Ym 0 0
0 HYo !}m—'z Gim=1 (/m 0
GO - . X . (Ill = . . .
o - Yo 9N T gm

The two codes are equivalent in the sense that the output sequences of the two
encoders are identical for identical input sequences [1]. The state complexities of both
the (n,, k,,m) code and the (mn,.mk,. 1) UMC are mék,.

The free distance, d,... of a convolutional code 1s the minimum Hamming distance
betweeen all pairs of codewords that are associated with input sequences that differ
in at least one subblock. It can he assumed without loss of generality that the first



difference between the input sequences appears in subblock 0. Let vy 2 be the code
sequence from time ¢1 to /2. For an (n. k. 1) UMC. when the only non-zero portion
of the information vector is uy. then the (non-zero) output is v = uo[GoGh)]. The
set of all such ug's and vyq’s forms a (2n. k) block code. It follows that the optimal
djree of the (n,k, 1) UMC is upperbounded by the minimum Hamming distance of
the optimal (2n,k) block code [1]. The optimal block code minimum distances are
tabulated in [3]. In several cases, the UMC upper bound is larger than the free
distance attained by the optimal codes with the same state complexity for which
the greatest common denominator of n, and k, is 1 (hereafter called basic codes).
Lee conducted an exhaustive search for the optimal UMCs and found several UMCs
better than the optimal basic codes.i.e.. the rate and complexity of the optimal UMC
and basic codes were identical. but the free distance of the optimal UMC was higher.

3. Double Memory Codes

A double memory code (DMC) is a convolutional code with M = 2 that can be
described by v, = wGo + ti—1Gy + ue2Ga. Any (0, k,,2m) convolutional code with

encoding matrices go. ¢1. .... gan is equivalent to the (mn,.mk,,2) DMC with encoding
matrices
Jo %N o Gm— Ym Gm+1 gam-—1
Go _ 0 "o . .(/m.—’z (;l _ .(/m'—l Im Gam-2
0o - o i g2 0 Gm
Ham O e ()
- J2m—-1 Y2m 0
(12 = .
Im+1 o Y2m

The state complexity of the DMC is 2mk,. The free distance is again given by
the minimum weight vector resulting from an information sequence that is non-zero
in the 0tf subblock. For an (n.k.2) DMC. because the set of such ug’s and their
associated outputs can be considered as a (3n. k) block code with vo2 = uo[GoG1Ga),
the optimal dree is upper bounded by the highest attainable minimum distance of a
(3n. k) block code. The bounds are shown in Table 1.



The bound for & = | is uninteresting because an (n.1.2) basic code is also an
(n,1.2) DMC. The bound is tight for most values of & > 1. However, in some cases,
this block code upper bound for the DMC dy,.. is larger than the free distance achieved
by the optimal basic code with the same rate and state complexity. In addition, the
block code upper bound for DMC's is greater than or equal to the block code upper
bound for UMCs, which indicates that larger free distances might be attained with
DMCs. However, the existance of a DMC that attains the block code upper bound is
not guaranteed. An exhaustive search for the double memory codes with maximal free
distance is being conducted for small complexity values and results will be presented.
In addition, a free distance bound for DMCs with uneven memory distributions is
currently being studied.



References

3]

L.N. Lee. "Short Unit-Memorv Byvte-Oriented Binary Con-
volutional C'odes Having Maximal I'ree Distance.” IEEE
Trans. Inf. Theory. May 1976, pp. 319-352.

D.G. Mills and D.J. Costello.Jr.. "Using a Modified Trans-
fer Function to Calculate the Unequal Error Protection
Capabilities of Convolutional Codes.” submitted to the
1993 IEETL International Symposium on Information The-
ory.

H.J. Helgert. and R.D. Stinaff. "Minimum-Distance Bounds
for Binary Linear (‘odes.” [EEE Trans. Inf. Theory,
May., 1973. pp. 311-356.

S. Lin and D.J. Costello. Jr.. Evror Control Coding: Fun-
damentals and Applications. Prentice-Hall.Inc.. 1983.



R n k K DMC | optimal basic
bound code (4]

1/2 2 1 2 6 5

4 2 4 8 7

6 3 6 10 10

8 4 8 12 12

10 5 10 15 14

12 6 12 16 16
1/3 3 1 2 9 8

6 2 4 12 12

9 3 6 15 15

12 4 8 18 18

15 5 10 22 22
1/4 4 1 2 12 10

8 2 4 16 16

12 3 6 20 20

16 4 8 24 24
2/3 3 2 4 6 5

6 4 8 8 7

9 6 12 12 --

Table 1
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Abstract — An algebraic approach to constructing convolutional codes from quasi-
cyclic codes is investigated. Forney first discovered the interesting relationship be-
tween the structure of quasi-cyclic codes and convolutional codes. Recently, Tanner
exploited this connection by comparing the syndrome matrices of both types of codes,
which allows us to lower bound the free distance of a convolutional code with the min-
imum distance of an associated quasi-cyclic code. In this paper we first summarize
Tanner’s approach and show how it is possible to relate cyclic codes to convolutional
codes by using quasi-cyclic codes as an intermediary. The problem of minimizing the
constraint length of the convolutional codes is studied and an algorithm to find an
equivalent convolutional code with reduced constraint length is presented. A number
of codes with minimum constraint length and a lower bound on the free distance
are found. However, there remains some open problems. For one, the actual free
distance of some of the convolutional codes appears to be much higher than the lower
bound indicates. Also, the rate of the convolutional codes is lower than the rate of
the original quasi-cyclic codes and may lead to lower rate convolutional codes than
expected.
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1. Introduction

Binary convolutional codes are employed in many communication systems because
they provide efficient error correction and allow simple decoding algorithms. However,
it is known that unlike block codes, for which numerous algebraic approaches lead
to the construction of good codes, convolutional codes do not have a structure that
allows a simple algebraic construction. In most applications, it is necessary to find
good convolutional codes by exhaustive computer search, which limits the complexity
of the codes obtained and their free distances.

Since no simple algebraic approach allows us to construct the generators of a con-
volutional code directly, one idea is to start from existing block codes and transform
them into convolutional codes. Massey, Coostello, and Justesen [1] used this approach
in relating the generator of cyelic block codes to the n generators of rate 1/n convo-
lutional codes. Then. Justesen [2] generalized this approach to the construction of
g-ary rate [/n convolutional codes. However, in both of these approaches, the con-
struction leads to good convolutional codes only for certain cyclic codes. The main
problem in relating cyclic codes to convolutional codes is to construct from one cyclic
code generator polynomial the {n generator polynomials of a rate {/n convolutional
code. Thus, the idea of multiple generators for convolutional codes leads to the use
of quasi-cyclic block codes, for which the structure is more similar to the structure of
convolutional codes, thereby allowing us to use a larger subclass of block codes than
the class of cyclic codes.

Tanner (3] extended the work of Forney [4] and Massey, Costello, and Justesen
by relating the syndrome matrix of a convolutional code and a quasi-cyclic code. His
main result was that the convolutional code constructed from the quasi-cylic code has
a free distance lower bounded by the minimum distance of the quasi-cvclic code. The
main problem with this approach, however. is finding the convolutional code with the
minimum constraint length. In this paper. we investigate the different possibilities
that exist in order to reduce the constraint length of the convolutional code, and we
give an algorithm to convert a cyclic code into a convolutional code by using quasi-
cyclic codes as an intermediary. Tables of the best codes constructed from BCH codes
[5] are given, and the results are compared to optimal codes found by computer search

[6][7)-

2. Preliminaries

The notation introduced in this section is important to understand the connection
between block and convolutional codes. We will first describe the syndrome matrix
of quasi-cylic codes. Then, we will show how the syndrome matrix of a convolutional



code can be related to the syndrome matrix of a quasi-cyclic code in a particular
form. For a comprehensive treatment of the theory of convolutional codes, the reader
is referred to [6], and for quasi-cyclic codes, to [8].

2.1. Quasi-Cyclic Codes

Quasi-cyclic codes are a subclass of block codes which include cyclic codes {6] as a
subclass. The defining property of quasi-cyclic codes is that one codeword can be
obtained from any other codeword by cyclic shifts of n positions, which allows us
to decompose a codeword into n blocks of m symbols, or m blocks of n symbols.
Whether we choose the first or the second decomposition leads to a different form for
the syndrome matrix. Note that if n=1, the quasi-cyclic code is cyclic.

A linear quasi-cyclic (N.IN) code C,, where ¥ = nm is the codeword length, n is
the number of blocks in the codeword, and m is the length of each block, is the set
of all n-tuples having the property defined above. That is. if

vV = (‘Uo.l‘],....lﬂ\'_]) (1)

is a codeword in Cy, v shifted cyclically by n positions is also a codeword. In order
to decompose the generator matrix into circulant blocks, we can reorder the indices
of v to obtain

V= (UO’ Ums U2ms ooy Une 1)« V1 Ui 1y oo« Un—1ym41s oo Um—15 V2m—1,4 -5 vnm—l)- (2)

14tblock mdhioek mthblock

Thus, a cyclic shift of V by n positions consists of moving the m** block of n bits to
the first block position. and the other blocks to the right by n positions. This yields

V = (it ) (3)

for i=0 to n-1 and j=0 to m-1. A shift of n elements in V consists of adding 1 to
j mod m. Such a shift takes any codeword to another codeword. Thus, it is also
possible to write V = (v;4;,) for j=0 to m-1 and i=0 to n-1. It follows from this
notation that we can rearrange the vectors into the row space of a block matrix G
consisting of An circulant blocks Gi') of size m x m:

R
GO G iy

G =

(V) (1) dn-1)
Ghor Gily - (—'k—1



where k = [ K j, | | denotes the floor function, and for all i, 0 < < n —1, and },

m

0<;<k—-1, ng‘) is an m x m circulant matrix, that is

St i i 1
gjo) gj(;) 91('1) 0 -0
I I
M _ | . . . .
Gy =1, N o (5)
L) - g0 0 gl
The degree ! polynomial
dNN) =gl + N+ X (6)

is called the generator poynomial of the circulant matrix, with { <m — 1.

The syndrome matrix H of the quasi-cylic code C, is defined by GHT = 0 and
is an r x n block matrix of m x m circulants, with rm > N — K. (H may contain
linearly dependant rows.) In order to express the generator and syndrome matrices in
a simpler manner, it is possible to use the polynomial form since the ring of circulant
m x m matrices over the binarv field is isomorphic to the ring of polynomials of degree
{ less than m, as noted in (6). Therefore. the syndrome matrix H(X) can be written
as:

PO(X) Xy  ASTY(X)
/(0) Y /(U Y /("—1) A

H(X): T ( ) 4 ( ) 4 ( ) (.‘,)
POxy Ry e AT

In the next section, we will see how the syndrome matrix of a convolutional code
can be related to the syndrome matrix of the quasi-cylic code shown in (7).

2.2. Convolutional Codes

Let C, be a rate {/n convolutional code. Then, for any information sequence uld),
1 < i < k, that enters the encoder, the ;' encoded sequence is denoted vl 1<y <
n. By using polynomial notation, the sequence u‘*) can be written as

ud(X) = ul) + N+l X (8)



and the encoded sequence v/ can be written as

viX)y = ol + 0N e XE (9)
Thus, by denoting
u(X) = (uV(X), eP(X),... . uO(X)), (9)
and
v(X) = (X)), v®(X),...,v™(X), (10)
we can write
u(X) = G(X)u(X), (11)
where G(X) is a [ x n matrix of generator polynomials with the following form:
9o (X) g0 (X) o g (X)
Grx) = | A0 A TR 12)
d00X) X)X

Like quasi-cyclic codes, the syndrome matrix H is defined by G(X) HT(X) =0,
and has the following form:

P(X) R(X) o RSTY(X
POxy RWixy /‘"‘ X

H(X) = _n( ) .n( ) _ (X) 13)
AL A e ATY(X)

where r =n — .

Note that the structure of H(X) in (7) and (13) is identical. This suggests a
connection between the two classes of codes. However, the number of rows r in both
matrices is not defined the same way, which will affect the rate of the convolutlonal
code constructed from a quasi-cyclic code. and the degree of each polynomial h ( X),
for0 <j<r—1land 0<i<n-—1,is less than m in the quasi-cylic code syndrome
matrix, whereas it can be of any degree in the convolutional code syndrome matrix.

3. Connection between Convolutional Codes, Quasi-

Cyclic Codes, and Cyclic Codes

Tanner [3] proved that the similarity of structure between the syndrome matrices of
quasi-cyclic and convolutional codes could be used to construct convolutional codes



from quasi-cyclic codes and vice versa. The goal of this section is to summarize his
results and explain some of the remaining difficulties. We first make the connection
between the two classes of codes and give Tanner’s main theorems. Since the purpose
of this paper is not to derive Tanner’s results. we will simply state the main theo-
rems without proof. We will study how the theory can be implemented to construct
convolutional codes from cyclic codes by using quasi-cyclic codes as an intermediary,
and finally, we will present an algorithm that minimizes the constraint length of the
convolutional codes constructed.

3.1. The Syndrome Matrix Connection between Quasi-Cyclic
Codes and Convolutional Codes.

The syndrome matrix is useful for block codes. especially to determine if a received
vector belongs to the set of codewords defined by the code or if it needs to be corrected.
In particular, a received vector r(X) belongs to a block code C,, whose syndrome
matrix is H(X), if and only if

r(X)H'(X)=o0. (14)

As for block codes, a received sequence r(X) belongs to a convolutional code C,,
whose syndrome matrix is H(X), if and only if it satisfies (14).

Tanner’s approach to relating the syndrome matrices of quasi-cyclic codes and
convolutional codes is to eliminate the problem that polynomials in a convolutional
code syndrome matrix are of any finite degree by reducing these polynomials modulo
X™ 41, that is by taking the remainder of the division of each polynomial by X™ + 1.
The first step is to construct a quasi-cyvlic code from a convolutional code by this mod-
ular reduction. which allows us to derive theorems relating to the minimum distance
and the rate of the quasi-cyclic code. Then, by applyving the reverse transformation
from a quasi-cyclic code to a convolutional code, it is possible to find corollaries to
these theorems which lower bound the free distance of the convolutional code.

Let C, be a rate {/n convolutional code with syndrome matrix H,(.X) and C,
be the associated (N,K) quasi-cvclic code defined by the syndrome matrix Hg(.X)
constructed by reduction modulo X™ + 1 of H,(X'), where m = N/n represents the
size of the circulants of H,.

Theorem 1. The rate I/n of the convolutional code C, is less than or equal to the
rate K/N of the quasi-cvclic code C,,.

Theorem 2. The free distance of the convolutional code C, is greater than or equal
to the minimum distance of the quasi-cvclic code C,,.

Theorem 2 suggests that it is also possible to construct a convolutional code
for which the modular reduction leads to a quasi-cvclic code with known minimum
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distance, and therefore the free distance of the convolutional code is lower bounded by
the minimum distance of the quasi-cyclic code. This leads to the following corollary:

Corollary 1. Let C, be a (nm,K) quasi-cvclic code with minimum distance d;n
defined by an r x n syndrome matrix H,(X') of polynomials of degree at most m-1.
Let C, be the convolutional code defined by the r x n syndrome matrix H,(X) such
that

H,(X)=H,(X). (15)

Ifn—1is the rank of H,(X), then C, is a rate l/n convolutional code with dfree 2 dmin.

This corollary provides a very helpful method of constructing convolutional codes
from quasi-cylic codes. However, the problem of the constraint length v has not been
studied yet. In fact, the only information on the constraint length of the resulting
convolutional codes come from the size of the quasi-cyclic code circulants m. Indeed,

v <I{m-—1), (16)

since the maximum degree of the polvnomials of H,(X) is m-1, and the number of
information sequences is /.

In order to minimize the constraint length of the resulting convolutional codes,
Tanner [3] suggested constructing quasi-cyclic codes for the purpose of finding con-
volutional codes. Indeed, numerous lists of quasi-cyclic codes have already been
published, and they could easily be used in the construction described by Corollary
1. However, Tanner also showed that it is possible to convert block cyclic codes
into quasi-cyclic codes and thereby find the quasi-cyclic code realization that gives
the convolutional code with the highest rate and the smallest constraint length. We
now briefly summarize these results of Tanner, which then lead to our construction
algorithm.

3.2. Construction of quasi-cyclic codes from cyclic codes

Starting from a cyclic code of composite length N = nm, it is possible to construct a
quasi-cyclic code as described in the following lemma.

Lemma 1. Any nm X nm circulant matrix is equivalent under row and column
permutations to an n x n block matrix of m x m circulants.

The corollary of this lemma allows us to transform the syndrome matrix of a cyclic
code into the syndrome matrix of a quasi-cyclic code.

Corollary 2. Any rate K/nm cyclic code is equivalent to a quasi- cvclic code defined
by an n x n syndrome matrix of m x m circulants.

Lemma 1 and Corollary 2 are important because they provide a way of transform-
ing a cyclic code syndrome matrix into a quasi-cyclic code syndrome matrix. Indeed,
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the actual syndrome matrix of a cyclic code of rate N/nm is of size (nm — K') x nm.
By extending the circulation of the parity-check polynomial, it is possible to obtain
an nm x nm syndrome matrix H. of rank nm — K. Then, each m x m block H,, ,, of
the nm x nm quasi-cyclic code syndrome matrix H,, for 0 < I,J < n—1, is obtained
by letting Hy, , (¢,5) = He(J +in,J + jn) for 0 < ¢,j < m — 1. In order to obtain
the syndrome matrix of a rate (nm — rm)/nm quasi-cyclic code, it is necessary to
remove | = n — r row blocks of m rows each from the matrix H,, while keeping the
rank equal to nm — K. This means that { < [ {-n‘- J (See Example 1.)

This last operation consisting of deleting blocks of rows is the most tedious, since
it is not obvious which blocks can be deleted without decreasing the rank, or which
blocks one should delete in order to construct the convolutional code with the smallest
constraint length. One way of checking the rank of the matrix is to use Tanner’s
transform theory developed in [9] which involves Galois Field Algebra that is not
simple to implement. Another way is to transform H, into systematic form

H=|...... (17),

where s i1s the rank of H;, I, is the identity matrix of size s X s, A is of dimension
s x (n — s), and D is of dimension (n — s) x n . Linearly dependent rows of H, can
only appear in the last rows of the matrix, denoted by D.

Once the syndrome matrix of the quasi-cyclic code is constructed, it is also pos-
sible to permute rows and columns within blocks of circulants without changing the
distance or the rate of the quasi-cyclic code. This operation is particularly useful for
the purpose of constructing a convolutional code with low constraint length, since the
degree of the polynomials in H,(.X') must be as low as possible in order to construct
a convolutional code with small constraint length.

Therefore, in the process of constructing a convolutional code from a cyclic code
using a quasi-cyclic code as an intermediary, it is necessary to combine all these
operations in a single algorithm. We present an algorithm for doing this in the
following section.

4. An Algorithm To Construct Convolutional Codes
from Cyclic Codes
In this section, we study how to combine the operations discussed previously to

construct the convolutional code with the smallest constraint length starting from a
given cyclic code.
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4.1. Algorithm

As seen previously, once permutations have been performed on the rows and columns
of the cyclic code syndrome matrix to construct the square syndrome matrix of the
quasi-cyclic code (see steps 2 and 3), it is necessary to remove some row blocks of
the quasi-cyclic code syndrome matrix; otherwise, the algorithm would lead to a
rate zero convolutional code, since the generator matrix would have no rows. In
order to remove the rows that correspond to the highest degree polynomials (since
polynomials with high degrees lead to large constraint length convolutional codes), it
is necessary to make permutations within blocks of circulants to reduce the degree of
the polynomials as much as possible (see steps 4,5,6, and 7). Then, we try to remove
the blocks with the highest degree polynomials (see steps 8,9, and 10). Finally, if
the rank of the original cyclic code is maintained, a new permutation within blocks
of circulants might decrease tlie degrees of the polynomials again (see step 11). This
leads to the following algorithmn.

Algorithm:

Step 1:  Select an (nm.I\) cyclic code with parity-check polyno-
mial h(X) and minimum distance dpy.

Step 2:  Construct the nm xnm matrix H. by putting h(X) in the
p Yp g
first row and its successive cvclic shifts in the remaining
rOWS.

Step 3:  Construct the n x n block matrix H, of m x m circulants
using Corollary 2.

Step 4:  Convert H, to its polynomial form H,(.Y).

Step 5: Construct the vectors R = (rg,...,rs—1) and
C = (coy...,Cno1), wherer; = maxocy<cn—i deg Hq(,_“(‘\’),
and ¢; = maxXocr<n—1 degH,, , (X), 0 < I.J<n-1.
Let r = maxo<s<n-1 7 and ¢ = maxXgcj<n—1 CJ-

Step 6: Permute rows within block [ of circulants of Hg, for
0 < I <n—1.until r is minimal over all possible per-
mutations.

Step 7:  Repeat Step 6 with columns and minimize c.

Step 8:  Let [ = { ImL J
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Step 9:  Delete [ row blocks [ from H,, where I is the index of the
largest [ values of r;.

Step 10:  Compute the rank of H,. If the rank is nm — K, go to
Step 11. If the rank is strictly less than nm — K, go back
to Step 9 and try another set of row blocks. If all sets of
[ row blocks have been tried, set { = { —1 and go back to
Step 9. If I = 0. then the construction is impossible.

Step 11:  Hjy is an (n — [) x n block matrix of m x m ciculants.
Repeat Steps 4.5.6, and 7on H, with0 </ <n—-1-1{
instead of n.

Step 12:  Let H, (X )=H,(.X') be the svndrome matrix of a rate [/n
convolutional code with dfree > dmin-

Step 13: Construct a generator matrix G.(X) such that
G,(X)HI(X) = 0,

Step 14:  Convert G,(X') to minimal form (see [10] and [11]). Stop.

Note that Steps 6 and 7 can be exchanged without modification of the result.
Note also that step 11 consists in permuting rows and columns like in steps 4,5,6, and
7, except that the number of rows in H, is now only n — (.

4.2. Example

In order to fully understand this algorithm, we now give an example of the con-
struction of a convolutional code. starting from the (15.3) BCH code with minimum
distance d,,i, = 7, originally taken as the example in Tanner's paper [3].

Example 1. Let C. be the {15.5) BC'H code.
Step 1: h(X) =14+ X + X? + X® that is h=[110101}, n =3, m =5, and K = 5.
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(Note that in H,. the polynomials correspond to the first column of each

circulant.)

(4,4.4).sor =4 and ¢ = 4.

= (4.4,4) and C =

Step 5: R

10



a
O OO0 IO~ OO O OoO|— — O O

OO O~ OO OO OO D -
OO WV O ool oo OO [ O O —
OSSO o Qoo o ~0O|ICC — — O
—_ O OO0 OO 4V O Q|0 — — OO
— O OO O OO OO
OO OO0 - O OO 00 o — O
OO O - OI0O0O N ~H|O O ~ OO
OO A OO0 — QI - O O O
D O OO0 A -~ O OO OO O
—_0 OO O OO O O O OO
DO - OO0 O T Qo000 & D —
OO —~ OO0 —~ OO0 O —O
o - —_Cc oo~ CcC oo e — = O
— — 0 O O~ oo o0 — O O O

Step 6 and T: H, =

R =(1,2.2) and C = (1.2,2).

Step 8: | = 1.

0000

1

0 00

1

0
1
1
1
0 0 0

1

0 0 0
1
1

1
1
00

0 0

1

1
1

0]

1

0 000

000 0]0
1

1

00000100

0 00 00O

1

0 00

0 0 0 0O

1

000 00O0O01

l

00 0
I 0

1

0

1 0] 0

1

00 01
0

1

0

1 0 0[O0

1

1
0
0 0 0
000

0] 0 0
1
1

1
|

()

0 0000

1

0 00 0

0

1 007000

0 0

0001 0[0O0O0O

Step 9: H,

Step 10: rank =10 = nm — K.

£

< .
w

[puesnasnen |

L o
= e
[75]

=, +
< N
7 —

o~
H X ——
ey Y

- .
g+,
= 3
2 [
= -
k) -
tnlﬂu o
S an)
b= I
ge]

@] -
= -
O -
z. ow
= &
—t —
[« [a
Q [+B]
] g
wn wn

Step 13: Go(X) = [ 1+ X + X2 1+ X24+X% 3]



Step 14: G,(X) is alreadv in minimal form. The constraint length of the rate 1/3
convolutional code is 3, and df,.e > 7. Actually, in this particular case, dfr.. = 7.

This example results in a constraint length of only 3, whereas the upper bound
is 4 from (16). The free distance equals its lower bound, which is not the case in
general, but the best rate 1/3 convolutional code with constraint length 3 has a free
distance of 10 [6]. The algorithm was also applied to BCH codes of length 15, 63,
and 253, since their lengths are composite. Specifically, 15 =3 x 5,63 =3 x 3 x 7,
and 255 = 5 x 3 x 17, which allows us to construct codes with rates k/3, k/5, k/7,
and k/9. The other rates that can be constructed from these codes, such as k/15,
k/17, or k/21, are very low and thus were not considered. In the next section, we
give tables of convolutional codes constructed from these classes of BCH codes.

5. Results and Comments on Construction of Con-
volutional Codes from BCH Codes

The tables of constructed codes show the code rate, the generator matrix with poly-
nomials in octal form (e.g., 54 corresponds to 101100, i.e., 1+ X?+ X3), the constraint
length, the memory order, the original BCH code. the lower bound on the free dis-
tance, the computed free distance (for some codes ?), and the best code found by
exhaustive search. In this last column, either the free distance of the best code with
the same rate and constraint length is given or the constraint length v of the best
code with the same rate and free distance is given.

n
“X means unknown



5.1. Construction Table for Galois Field GF(16)

Rate | Generator Matrix | Const. | Mem. | BCH | Lower Bd | Comp. | Best
Length | Order | Code on dy,.e dfree | Code
1/3 54 1 7 3 3 (15.5) 7 7 10 [6
1/5 1 1 4 7 54 64 3 3 (15.,5) 7 11 16 [7
1/5 4 2 2 7 4 2 2 (15,5) 7 7 13 [7
4 0 4 06 .
2/5 00 4 4 4 1 1 (15,11) 3 3 4 [7]
0 6 4
2/3 6 4 0 2 I (15.11) 3 3 3 [6]
4 6 2 00
3/5 | 4 4020 2 L] (15.11) 3 3| 407
6 4 0 0 2
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5.2. Construction Table for Galois Field GF(64)
Rate Generator Con. | Mem. | BCH | Bd | Com. Best
Matrix Len. | Ord. | Code | dy, | dy, Code
11 34 63 12 46 56 44 62 1
2/9 34 63 12 46 56 44 62 14 22 10 5 (63,18) | 21 X X
1/9 11 34 63 12 46 56 44 62 14 5 5) (63.18) | 21 25 X
2 12 3 4 44 6 62 14 6 N
290 1203 4 44 6 62 14 11 4 ® +o|(63.24) ) 15 1 X X
3 4 44 6 62 14 6 4 24
3/9 | 12 3 4 44 6 62 14 6 4 | 12 1 (6324) | 15| X X
2 12 3 4 44 6 62 14 6
1/7 4 0 66 76 52 11 02 ] T 1 (6330) | 13| 21 | 28 [1]
N 4 0 66 76 52 74 62 , )
2/7 % 44 66 1 24 96 54 S 4 (63,30) | 13 X U=4[l]
44 0 66 76 52 T4 G2
3/7 72 62 22 76 34 02 47 13 5 (63.30) | 13 X X
26 44 66 1 24 26 54
02 3 I 32 64 56 6
4/7 ;é _;6 074 gj 012 f_f 11.1 6 | 5 (6336 | 11| 1 X
464 4 34 0 6 0l
40 0 0 0 2 4
40 20 0 40
- 6 4+ 2 0 0 20 - . .
6/7 011001 1 L6357 ] 3 | 3 X
6 2 0 4 0 0 0
4 0 4 0 t 4+ 0
0 4 00 0 0 6
4 00 0 0 1 ¢
5/ 0204046 3 1| 635 3| 3 | 4[7]
00 0 4 t 0 |
0 24 4 0 20
2/3 o4 ) 1[5 3| 3 | 306
0 6 1
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5.3. Construction Table for Galois Field GF(256)
Rate Generator Con. | Mem. BCH Bd | Comp. | Best
Matrix Len. | Ord. Code diree | djree Code
6123 637 0442
2/. s : 255,2
231 0665 64614 76646 P B @s2s) ) I X X
1/3 62564 76204 3754 12 12 (255.,215) il 20 24 (6]
9 7632 314 735 i oem 9 _
2/3 2004 465 4415 21 11 (255,223) 9 X v=9 [7]
14 7 44 34 36
3/5 07 674 6 534 4 L4 6 |(255.231) | 7 X |v=507
3 3 96 7 1
1/3 641 716 354 S N (255.231) N 14 18 [6]
S 551 1364 152 T 4 o - , _
2/3 161 3 16 17 9 (255.231) i X v=6 (6]
1/3 1 15 74 5 5 ] (255.239) | 5 10 | 13[6]
77 614 454 0 602
[y '- 5 9 : 2 !
2/5 | 601 073 066 602 o | | S |(255239)) 5 X X
1/5 247 216 362 662 54 3 3 (255.239) 53 22 v=>5 (7]
72 75 26
92/ =M 3 255 9! :
2/3 6 32 56 9 ) (255,239) | 5 X 9 (6]
0 26 26 64 54
3/5 34 6 14 1 0 10| 4 |(255.239) | 5 X |v=3[1]
6 64 2 4 5
22 0 42 24 76
5 ‘
4/5 ] fl ? l) f; 1 1] (255.239) | 5 X X
5 0 1 34 0
5.4. Comments on the Constructed Codes

Some conclusions can be drawn from the tables above. On the one hand, some of
the codes cannot be compared to codes found by exhaustive search, since they have a
larger constraint length than any code of the same rate found by exhaustive search.
Thus, this algebraic construction allows us to construct codes that are impossible
to find by exhaustive search. On the other hand, the codes for which a comparable
optimal code exists usually have a suboptimal ratio of free distance to constraint
length, although for some constructed codes only the lower bound on the free distance




is known, which may be weak compared to the actual free distance of the code. For
example, the rate 1/5 code with constraint length 8 has free distance 22, whereas the
bound only gives 5.

It was also observed, especially for GI'(256), that only very high rate BCH codes
lead to the construction of quasi-cyclic codes and convolutional codes. This means
that it is hard to find convolutional codes of low rate with very high free distance,
since high rate block codes have low minimum distance. More generally, it was
observed that a large number of BCH codes do not lead to the construction of quasi-
cyclic codes with lower cycle lengths m, and it is necessary to use BCH codes with
much higher rates than the convolutional codes constructed. For example, the ficst
2/3 convolutional code constructed from GF(256) was based on a (255,215) code,
whereas it should theoretically be possible to start with the (255,171) BCH code,
which would lead to a higher free distance.

Finally, it was observed that this construction leads to good codes for rates close
to 1/2. In particular, the rate 3/7 and 4/7 codes constructed from the (63,30) and
(63,36) BCH codes have a large constraint length and a good. although suboptimal,
ratio of free distance to constraint length.

6. Conclusions

We have proposed a construction algorithm for convolutional codes based on Tanner’s
discovery of the connection between cyclic codes. quasi-cyclic codes and convolutional
codes. Codes have been constructed with this algorithm, and some conclusions have
been drawn about this new algebraic approach to constructing convolutional codes
from block codes. In particular, this algebraic construction allows us to construct
non-standard rate convolutional codes with large constraint length, but in general
leads to suboptimal codes.

One might wonder if trying to relate (uasi-cyclic codes to convolutional codes does
not lead to very good convolutional codes because the quasi-cyclic codes used are not
designed for the construction of convolutional codes. Thus, the problem of designing
good quasi-cyclic codes with the purpose of constructing good convolutional codes
should be investigated.
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